您现在的位置是: 首页 > 汽车论坛 汽车论坛

新能源汽车核心技术_新能源汽车核心技术有哪些

佚名 2024-06-11 人已围观

简介新能源汽车核心技术_新能源汽车核心技术有哪些现在,我将着重为大家解答有关新能源汽车核心技术的问题,希望我的回答能够给大家带来一些启发。关于新能源汽车核心技术的话题,我们开始讨论吧。1.燃料电池汽车的核心技术2.三电指的是什么

新能源汽车核心技术_新能源汽车核心技术有哪些

       现在,我将着重为大家解答有关新能源汽车核心技术的问题,希望我的回答能够给大家带来一些启发。关于新能源汽车核心技术的话题,我们开始讨论吧。

1.燃料电池汽车的核心技术

2.三电指的是什么

3.新能源汽车维修的核心技术有哪些?需要留意哪些方面的问题?

4.节能与新能源汽车的核心技术是什么

5.新能源汽车核心技术解读

新能源汽车核心技术_新能源汽车核心技术有哪些

燃料电池汽车的核心技术

       被誉为新一代环保车型的燃料电池汽车可不使用传统化石燃料,而以来源丰富的氢气作为燃料,运行后的排放物只有水,且不排放CO2。燃料电池汽车通过电机驱动车辆,可兼顾静音性与良好的行驶性能,燃料填充时间较短,并能确保与内燃机汽车相近的续航里程。各汽车制造商目前正在积极开展针对燃料电池汽车的研发与推广工作。介绍了丰田公司燃料电池系统(TFCS)及燃料电池堆的结构、设计与控制。着重阐述了燃料电池系统的1项核心技术,即“水管理控制技术”,以及基于燃料电池堆的设计过程与燃料电池堆内部状态的可视化及计测技术。

       0?前言

       近年来,由于地球温室效应日益加剧,石油资源也在日渐枯竭,能源安全(尤指稳定供应能源等)问题得以不断凸显,运行中不产生CO2的新能源汽车逐渐引起了广泛关注。丰田公司于近期设立了“CO2零排放目标”,并提出到2050年,提高新能源汽车的销售比例,目前正在对此开展相关研究(图1)。

       FCV?具有以下特点:(1)以氢气作为燃料,氢气可通过化石燃料在内的多种能源进行制取,来源广泛;(2)行驶中的排放物只有水;(3)由于主要驱动装置是电机,所以可充分兼顾静音性与良好的行驶性能;(4)具有较短的燃料填充时间,同时能确保与内燃机汽车相近的续航里程。目前,社会各界正迫切希望该类环保车型得以实用化。考虑到FCV的诸多优点,研究人员认为FCV同样也可满足中长距离的运输需求(图2)。丰田公司于2014年在世界范围内首开先河,上市销售了量产型FCV“MIRAI”车型。此外,丰田公司于2018年上市销售了沿用了该燃料电池系统的新型燃料电池城市客车“SORA”(图3),而且针对轻型货车的验证评审也正在逐步开展中(图4)。

       1?丰田公司燃料电池系统

       丰田公司将混合动力技术定位成新能源汽车的核心技术,将混合动力系统的发动机替换为燃料电池系统,将燃油箱替换为丰田公司的燃料电池系统(TFCS)(图5)。

       燃料电池系统由进行发电的燃料电池堆、供应氢燃料的氢气系统、供应氧气的空气系统,以及冷却系统所构成(图6)。燃料电池堆发出的电能通过燃料电池升压转换器向主驱动电机及高电压蓄电池等高压系统供电(图7)。就对燃料电池堆发电有着重要影响的电解质传导性而言,其灵敏度会随着附近环境的相对湿度而发生显著变化。不仅如此,反应过程中生成的水会影响到燃料电池堆内的燃料供应过程,因而对生成水的管理可谓至关重要。本文论述了基于燃料电池堆水管理而进行的相关设计与系统控制。

       2?燃料电池堆

       燃料电池堆通过设计单电池的电极面积和单电池数量,从而获得所需的电能。在通常情况下,单电池由作为氢气与氧气反应部位的膜电极总成(MEA)、显微渗透层(MPL)、气体扩散层(GDL)、用于从外部供应氢气和空气的气体通道,以及隔板等部件构成(图8)。

       丰田公司通过对燃料电池流道及MEA?进行改进,使燃料电池系统实现了高密度化。此外,由于对单电池内部弹簧机构的有效应用,简化了电池的连接构件。同时,由于电池本身的薄型化,缩小了体积尺寸。而且,随着隔板材质的调整,电池全重有效减轻了,使电池具备较高的功率密度(3.1?kW/L?与2.0?kW/kg,图9)。结果表明,燃料电池电极铂催化剂的使用量还降低了(图10)。不仅如此,为避免降低接触阻力并确保耐蚀性,隔板的表面处理工艺也从电镀金处理调整为较廉价的聚合非晶碳镀层(PAC),从而显著降低了成本。

       2.1?高电流密度化

       电池性能是由理论起动电压的损失(超电压)所决定的。超电压总体可分为以下3类:源于催化反应的“活性化超电压”,源于电子、质子移动的“电阻超电压”和源于反应过程的“浓度超电压”(图11)。就聚合物电解质燃料电池(PEFC)而言,由于发电过程中生成的水处于液相状态,单电池内的气体扩散受阻会导致浓度超电压进一步恶化。另一方面,在易于形成蒸汽的高温区,由于电解质附近的相对湿度有所降低,作为质子移动电阻的电阻超电压也会相应增加。通过以上分析,如要实现燃料电池的高电流密度化,针对发电过程中生成的水而开展的构件设计及控制是至关重要的,为燃料电池水管理技术的核心理念。

       2.2?降低浓度超电压

       在低温及普通运转温度区,由于发电而生成的水会滞留于空气极侧的电池流道、GDL、MPL?及MEA中,从而产生浓度超电压。在通常情况下,与气体流道不接触的GDL及MEA内容易积存液态水。而在丰田的MIRAI车型上配装的燃料电池堆的单元流道结构,采用了3D细网格状结构。在优化了氧气供应并排出液态水的同时,由于隔板表面具有一定亲水性,将液态水导向流道表面,进而降低了浓度超电压(图12、图13)。此外,在GDL内,通过调整碳素纤维与黏合剂的比例以实现最优化。而在MPL方面,通过实现碳黑颗粒的粗颗粒化而降低透水压力,使气体扩散性提高约2倍,进而降低了浓度超电压。

       2.3?降低电阻超电压

       为了确保PEFC中电解质的质子传导性能,需使电解质周围环境保持湿润状态。在常规的燃料电池系统中,通过加湿器可排出反应中生成的水,将其返回燃料电池堆并进行加湿处理。配装在MIRAI车型上的TFCS,可通过结构简化以提高可靠性。丰田公司以降低成本为目标,取消了该类加湿器,基于自加湿理念而对各个构件进行设计,由此实现了与以往相似的高温性能(图14)。自加湿的工作机理是在干燥的空气入口处通过氢气极对空气进行加湿。该设计方式不仅兼顾了各个构件,而且与冷却水流量及氢循环泵流量等系统实现了有机结合。

       燃料电池在高温状态下运转时,空气极入口湿度会相对较低。在MEA?内部的催化剂附近,质子传导性会逐渐恶化,进而会使电阻超电压有所增加。在外观上,催化剂有效表面积减少,使燃料电池性能恶化。通过增加包覆催化剂电解质官能团的方式,以确保催化剂有效表面积的不变。在提高质子传导性的同时,通过电解质/载体碳比率的最佳化及催化剂载体碳的实心化,即使在低湿度环境下,也能有效增加催化剂的表面积。同时,通过该措施还实现了单电池流道形状的最佳化,有效抑制了空气极入口处的干燥趋向。除了针对上述构件的设计过程外,由于系统自身运转条件得以最佳化,即便在高温环境下,单电池的发电过程也可处于稳定运行状态,从而将超电压的发生可能性控制在最小限度以内(15、图16)。

       另一方面,由于燃料电池在低湿度条件下进行发电会出现游离基浓缩现象,导致电解质化学性能逐步老化。同时,由于薄膜化会引起机械特性降低,进而导致薄膜裂纹等问题。研究人员采取的对策包括向电极添加游离基淬灭材料,降低铁离子污染,以及利用3D细网流道使电极表面压力均匀化,以此确保了其耐久性能(图17)。

       3?燃料电池堆的水管理控制

       为使燃料电池堆的发电性能时常保持在最佳状态,研究人员根据交流阻抗法,并通过车载装置计测了MEA构件的电阻,进而对燃料电池的运转条件进行调整。

       3.1?基于交流阻抗法的含水量计测

       图18示出了常规燃料电池的等效电路。图中Rohm为电解质膜的电阻,Rvoid为GDL的电阻,Rion为电解质的电阻。这些电阻会随着含水率的不同而发生变化。在处于适度的湿润状态时,各部位电阻值均保持在较低状态。在冷却过程中,由于GDL内部液态水大量存在,导致扩散阻力有所增加,所以Rvoid值会相应增大。相反,在高温运转时等含水率较低的状态下,Rohm和Rion会有所增大,并产生电阻超电压。

       燃料电池升压转换器(图7)的直流指令电流值是通过重叠高频与低频的2种正弦波电流值而进行计测的。Rohm是通过高频正弦波重叠电流计测的阻抗值(HFR)而计算得出的。另一方面,Rvoid是根据LFR,再针对Rohm及Rion进行计算而得出的。

       3.2?燃料电池堆的自加湿控制

       TFCS在高温状态下运转时,改变氢气极的工作条件以进行水管理。为使水得以有效分配到氢气极表面,根据相关运转条件,可通过控制氢气泵以增加氢循环量。在确保了必要的氢循环量之后,通过降低氢气极入口压力的方式,促使氢气极表面的水实现不断流动。由于上述对策的运用,催化剂附近环境较为湿润,即便不采用外部加湿处理,也能有效提高系统运转时的环境温度(图19)。

       3.3?燃料电池高温运转时的水管理控制

       以计测方式得出的阻抗值为基础,控制MIRAI车型氢气泵流量、燃料电池水温等参数,由此进行水管理。图20表示进行水管理控制时车辆在较陡坡道上高速行驶时的评价结果。图21则示出了在未进行水管理控制的条件下,车辆在较陡坡道上高速行驶时的评价结果。在进行水管理控制的条件下,Rohm数值较为稳定,冷却水温度上升情况受到抑制,由此可以得到燃料电池堆的输出功率。另一方面,在未进行水管理控制的条件下,由于受到冷却水温度的影响,阻抗值出现了较大的变动,同时也无法确保同样的输出功率。此时,燃料电池堆的电池特性也面临着同样问题,即在全电流区的阻抗值较高,无法输出规定的电压。可认为该现象是电解质膜等部件的电阻超电压有所增加的原因之一(图22)。另外,由于电压降低,燃料电池堆的发热情况也会逐步加剧,进而导致冷却水温度上升。该结果表明,电解质及电解质膜的含水率有所降低,导致燃料电池发电特性面临着进一步恶化的现象。

       由以上分析可知,水管理控制可使电解质膜等部件处于稳定状态并得以润湿,同时改善燃料电池堆的发电特性,并能有效抑制冷却水温度的上升。

       3.4?0?℃下起动时的水管理控制

       燃料电池系统在0?℃下起动时面临的主要问题是燃料电池系统内部的残留水及由于发电过程中生成的水会出现冻结现象,无法向MEA?及时供应工作所需的氢气与氧气。由此面临的最恶劣情况即为燃料电池无法正常发电。

       图23示出了在0?℃环境下的系统控制流程图。在0?℃环境下燃料电池系统采用的水管理技术理念主要是确保起动时气体供应系统得以正常运转。在水即将冻结时,采用可使燃料电池系统升温到0?℃以上的“快速暖机”控制系统。

       3.5?降低含水量控制

       通过测量阻抗值,可以计算出燃料电池堆发电部位的含水量。GDL内的含水量能充分利用Rvoid进行管理。降低含水量控制是在运转过程中及系统停止运行时,控制冷却水温度、空气流量、氢气循环量等参数,并合理调节阻抗值,以便即使在0?℃以下的环境内进行起动时,也不会面对由于气体扩散所导致的问题,从而使燃料电池实现顺利起动(图24)。

       3.6?快速暖机控制

       在燃料电池堆的温度处于0?℃以下时,发电特性比正常运转时更低。同时,由于生成的水逐渐冻结,导致燃料电池堆无法实现持续发电(图25)。因此,当冷起动时的温度在0?℃以下时,为了能继续发电,须使燃料电池堆的温度处于0?℃以上。

       燃料电池堆在发电时,随着各类能量损失的出现,会同时出现发热现象。燃料电池堆处于正常运转工况时,须使发热量处在最小限度内,并高效运转。如需实现燃料电池堆的快速升温,应降低反应过程所需的空气量,进而逐渐增大浓度超电压(图26)。

       图27示出了在-15?℃温度环境下的快速暖机控制。根据燃料电池温度为-15?℃时的实际车辆评价结果,从系统校验后的8?s开始,燃料电池堆即可进行发电。由于一方面须维持一定的输出功率,另一方面须缓慢地降低电压,使燃料电池堆的发热量有所增加,最终将燃料电池输出功率控制为5~90?kW。此外,目前已确认了燃料电池堆可在32?s左右的时间内增温至0?℃以上。

       4?结语

       本文以燃料电池系统的1项核心技术“水管理”为研究对象。运用可视化及计测技术,实现了定量化处理,将该技术有效运用于燃料电池堆的设计与系统控制过程中。水管理是燃料电池堆的1项关键技术,今后还将依据相关原理,对燃料电池堆的运作机理进行说明,从而推进燃料电池堆系统的小型化、低成本化,以及性能提升等方面的工作。

       注:本文发表于《汽车与新动力》杂志2020年第3期

       作者:[日]?今西啓之等

       整理:彭惠民

       编辑:伍赛特

       本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

三电指的是什么

       现在新能源汽车的概念已经是越来越热,在环保呼声越来越高的同时由于油价的持续上涨,新能源汽车几乎成为了下一个风口,新能源的汽车拥有比传统汽油汽车更好的机动性,环保性,但是由于电动汽车在电池上的技术限制,新能源汽车也只能一直作为市内的代步工具一样的小众产品,并不能大面积的生产扩张。

       当年的比亚迪能获得巴菲特的投资就是应为比亚迪的电池技术,而如今银隆能够获得万达,京东等企业的投资也是因为银隆掌握了掌握的钛酸锂电池技术,所以就有很多人新能源汽车的核心技术只是在于电池。

       虽然这句话基本上是对的,但是真正的新能源汽车的核心技术是在电池与电量的调度机制上面,虽然电池的技术已经限制很多技术方面的领域的发展,有很多的前沿技术已经发展到现在都比较成熟,但是由于电池技术的限制,只能在原地等待电池技术的发展。就像之前的电动摩托车取代老式的踏板车一样,其实早些年的电动车就已经有了60V电压妈的电池共电动车使用,而且续航已经基本上能满足日常的使用了,但是由于前期电动车的能源使用调度机制不同,使得电动车在真正的使用上电池使用寿命极端,而且车辆在上坡路段显得绵软无力,有时在一些陡坡路段更是有人推车的情况,这也直接导致了当时电动车的使用率,虽然现在的电池已经能够满足汽车的使用,但是还是像之前电动车一样,局限在电池的使用调度机制上,包括续航时间,充电时间,电池的寿命与安全性方面的技术问题需要考虑,而这一些都是需要汽车公司在汽车的设计上能够解决的办法,必须设计好电池的调度机制,不然就会出现续航时间短,电池寿命短,电池过热或者有爆炸的危险的。

       所以说新能源汽车的核心技术不仅在于电池技术的发展,还包括汽车对于电池电量的调度机制上的优化。

新能源汽车维修的核心技术有哪些?需要留意哪些方面的问题?

三电指的是新能源汽车中的电池、电机和电控系统的简称。

       如今,新能源电动汽车已经成为汽车产业发展的趋势,而“三电”核心技术从很大程度上决定了整车性能,是评价新能源汽车极为重要的指标。

       目前,评价一辆新能源纯汽车靠不靠谱,主要还是要评测该车辆的“三电”技术,因为三电技术决定了一辆车的续航、安全、充电、动力等核心性能。

节能与新能源汽车的核心技术是什么

       ①电动汽车电池维护的关键技术

       电池故障是电动汽车最常见、最核心的问题。因此,新能源汽车的保养也需要从电池开始。

       首先要规范电池的储存过程,在电池储存过程中保持电池电量。电动汽车用电池具有一定的特性。如果电池在储存过程中处于断电状态,则容易硫化。一旦硫酸盐晶体出现在电池极板上,离子流动通道就会被堵塞。如果电池长期存放,离子流道会继续收缩,电池容量会降低。随着电池储存时间的延长,电池损耗会越来越严重。在此基础上,为了保证电池电量,用户必须定期给电池充电,尽可能避免硫化。

       其次,电池需要定期检查。电池是消耗品,长期使用会带来一定的损失。如果不定期检查电池,很难及时发现电池问题。长时间驾驶后,电池板内的活性物质容易脱落,不仅降低了车辆的行驶里程,也给车辆埋下了安全隐患。因此,工作人员必须定期检查电动车的电池。一旦发现电池问题,需要及时维修,护送车辆才能正常安全行驶。

②能源车控制器维护的关键技术。

       控制器的维护在新能源汽车的维护过程中也占有重要地位。在维修过程中,工作人员必须充分注意以下几个方面,第一,选择合理的检查方法。正常情况下,制造商会在出厂前配置能源车控制器的功能。因此,工作人员在检查控制器时,不需要拆卸控制器进行调整,只需要完成表面检查即可。第二,有效控制检查时间和状态。检查控制器时,工作人员必须确保控制器关闭,检查间隔不应超过三个月。此外,不要随意调整接触器接线。第三,及时清洗控制器。由于车外控制器没有采取相关防护措施,容易堆积灰尘和杂物,因此工作人员需要定期用纯水清洗电容装置,以提高控制器的效率。

③将传统诊断技术与新型电子诊断技术有效结合

       正常情况下,新能源汽车还未拆解时,一般会进行故障诊断,确定车辆故障位置和车辆技术状况,分析故障原因。随着高新技术在新能源汽车上的应用,汽车的结构变得越来越复杂。在机电液一体化发展趋势的影响下,新能源汽车故障诊断需要将传统诊断技术与新型电子诊断技术有效结合,充分发挥不同技术的天然优势,进一步提高汽车维修效率。

       简而言之,汽车故障诊断可以分为两个方面,人工经验诊断和现代电子仪器辅助诊断。在人工经验诊断中,车辆维修人员可以根据自己的专业知识和技能,通过综合观察和经验,初步判断车辆故障的基本类型和原因。然后通过专用设备和相关的计算机自检设备完成对车辆故障的检查和判断。新的电子诊断方法的使用,不仅需要不断引进新的技术和设备,还需要车辆维修人员丰富的实践经验。

新能源汽车核心技术解读

       新能源汽车技发展的三大核心技术是电机、电池和电控。

       新能源汽车是指采用新型动力系统,完全或主要依靠新型能源驱动的汽车,本规划所指新能源汽车主要包括纯电动汽车、插电式混合动力汽车及燃料电池汽车,节能汽车是指以内燃机为主要动力系统,综合工况燃料消耗量优于下一阶段目标值的汽车。发展节能与新能源汽车是降低汽车燃料消耗量,缓解燃油供求矛盾,减少尾气排放,改善大气环境,促进汽车产业技术进步和优化升级的重要举措。

       新能源汽车的核心一定不是体现在自动驾驶、智能座舱、内饰屏幕,真正体验车企造车技术的是三电系统——“三电”(电池、电控、电驱动)。

       一、电池

       现阶段电池仍旧是新能源汽车整车成本占比最高的一项大约在40%左右。

       动力电池在新能源汽车上一般又称为动力蓄电池,是指为电动汽车动力系统提供能量的蓄电池,主要用于接受和存储由外置充电装置和制动能量回收装置提供的电能,并通过高压配电系统为驱动电机、电动空调压缩机、PTC 加热器等高压用电设备提供电能。?关乎到汽车的续航里程及行车安全等等诸多方面。电池的关键在电芯,电芯最重要的材料便是正负极、隔膜、电解液。

       正极材料广为熟知的有磷酸铁锂、三元锂、钴酸锂、锰酸锂以及镍氢电池等。

       先来了解下影响电池使用性能的几个主要参数:

       正极材料的稳定性:直接影响到电池的安全性能,乃至整车的安全性能,这也就不难解释某某品牌的电池自燃现象了。

       能量密度:电池的能量密度分为质量能量密度和体积能量密度。质量能量密度是指电池单位质量所能输出的电能。体积能量密度是指电池单位体积所能输出的电能。很显然能量密度越大,同样体积或质量的电池能够携带的电能就越多,也就是说续航里程就越大。另外还有一个功率密度,衡量的是电池的瞬间放电能力,功率密度越大,放电能力越强,车辆的瞬间加速能力越好。

       所以能量密度不够高也是目前阻碍新能源汽车发展的一个很大原因。

       目前市面上常见车型电池类型选用情况:

       通过车企对动力蓄电池的选择也可以间接反应出各车企的追求目标和发展思路,有些更加注重续航里程,有更好的续航体验;有些车企更加注重行车安全,更加注重安全第一的理念。

       目前市场主要是磷酸铁锂与三元锂之争,其他已经基本被乘用车淘汰。

       二、电机

       驱动电机是电动汽车驱动装置的核心部件,应用于各种电动汽车上。驱动电机的性能直接影响到整车性能。

       电机由三部分组成:定子、转子、壳体,电机技术的关键点在定子、转子。它承担了与新能源汽车行驶相关的所有功能。新能源汽车的电机有正转和反转,正转即为向前行驶,反转即为倒车。并且还要有很广的调速范围,在能量回收工况时可充当发电机来用。

       目前常用的驱动电机有三类:直流电机、永磁同步电机、交流感应(异步电机)电机。

       其性能差异对比如下图:

       直流电机

       直流电机应用非常广泛,上图这种相比大家都不陌生吧

       缺点在于:效率低、质量大、体积大、可靠性差。新一代电动汽车已经淘汰该电机

       感应电机

       感应电机和永磁结构是相似的,本质都是通过电磁感应原理产生电流。它们最主要的差别就在于转子,一个有磁,使用永磁材料,一个没有磁,通常使用铝或铜材料。

       感应电机抗高温性能强,环境适应性更加佳,感应电机虽然最高效率小于永磁电机,但是平均效率表现得更好。不过缺点在于感应电机不容易控制,在研发成本上是增加的,不过在原材料成本上要小于永磁电机。

       永磁电机

       永磁电机转子的磁场是由永磁体产色的,避免了因生磁导致的电能损耗,而且尺寸和质量偏小,布置相对灵活。

       缺点有高温退磁风险(考验电机散热能力),空载损耗略高。

       不过现在的一些4驱或者双电机性能取向的车型,会采用两者搭配的方式。因为四驱的电动车架构下当不需要那么高的性能时可以仅让一个电机工作但永磁同步电机由于存在永磁体空载时会产生反拖滞阻碍车辆行进异步电机没有永磁体空载时没有反拖滞,所以永磁同步电机空载损耗会高于异步电机。

       因此四驱的动力要实现近两驱的能耗就需要“同异”搭配,效率最大化。

       电动车极限的动力输出日常使用频率较低在日常行驶低负荷工况下以永磁同步电机驱动为主处于随动的状态,实现近两驱的能耗。在加速工况下双电机最大输出实现四驱的动力,可以给整车带来更好性能体验和综合能耗。

       机械传动装置:

       机械传动装置是将电机输出机械能传递给车轮的装置。因为电机一般都具有较好的调速性能,现在的机械传动装置一般都是固定速比的减速机构,不再需要变速器,没有什么技术难度,不做太多介绍。(下阶段的2/3挡电动车专用变速箱其实也取决于车企想不想做和划不划算做而已)

       目前电机和机械传动装置基本是机电集成一体化的,可以做到传动效率更高,可靠性更好,质量更轻,体积更小。

       三、电控

       电控部分基本相当于车辆的神经中枢,相当于人类的大脑,起着控制整车运行的作用。

       新能源汽车电机、电控系统作为传统发动机(变速箱)功能的替代,其性能直接决定了电动汽车的爬坡、加速、最高速度等主要性能指标。同时,电控系统面临的工况相对复杂:需要能够频繁起停、加减速,低速/爬坡时要求高转矩,高速行驶时要求低转矩,具有大变速范围;混合动力车还需要处理电机启动、电机发电、制动能量回馈等特殊功能。

       电控方面,对于一般的主机厂来说,真正掌握的只有整车控制器,新能源汽车整车控制器与传统汽车的整车控制器差别并不是很大,它的成熟度也比较高。

       此外,电机的能耗直接决定了固定电池容量情况下的续航里程。因此,电动汽车驱动系统在负载要求、技术性能和工作环境上有特殊要求:

       1、驱动电机要有更高的能量密度,实现轻量化、低成本,适应有限的车内空间,同时要具有能量回馈能力,降低整车能耗;

       2、驱动电机同时具备高速宽调速和低速大扭矩,以提供高启动速度、爬坡性能和高速加速性能;

       3、电控系统要有高控制精度、高动态响应速率,并同时提供高安全性和可靠性。

       电机电控系统作为新能源汽车产业链的重要一环,其技术、制造水平直接影响整车的性能和成本。

       目前,国内在电机、电控领域的自主化程度仍远落后于电池,部分电机电控核心组件如IGBT 芯片等仍不具备完全自主生产能力,具备系统完整知识产权的整车企业和零部件企业仍是少数!

       最后,国内绝大部分自主品牌仅掌握了整车控制器与三电集成技术,对三电零部件技术却仍是处于落后的阶段,毕竟技术不是一蹴而就的。而合资品牌方面,没有电芯是它们唯一的软肋,他们更多的通过自己设计电池组与电池管理系统,进而掌握动力电池技术弥补了这个缺陷。

       未来随着新能源汽车技术的不断进步,技术瓶颈将逐个被突破,那时的新能源汽车的续航问题,安全问题,充电问题,成本问题都不会再成为车主朋友和车企关心的问题,届时的新能源汽车也会变得更加成熟,市场占比更加广泛。

       好了,关于“新能源汽车核心技术”的话题就讲到这里了。希望大家能够对“新能源汽车核心技术”有更深入的了解,并且从我的回答中得到一些启示。